Welcome to this module on how you can use recent advancements in AI-tooling to assist
with the development of iOS apps.
During this module, we’ll take a look not only at some specific technologies that can
be leveraged for iOS development, but also at general techniques that can be applied
across a whole range of tools. Don’t think that just because you dislike a particular
technology covered in a lesson, that you should skip it. Many of the techniques covered
will apply to all of the LLM-based tooling that are available today.
You might well also be aware of the incredible pace at which AI is improving. This makes
creating learning resources especially challenging. As such, this module attempts to
concentrate on the concepts of where and how you can use AI to improve your development
workflow, along with introducing details of the current state-of-the-art technologies.
You are encouraged to take what you learn here and apply it to whatever the current,
most-recent technologies are offering. We will endeavour to update and create new
content as paradigms change, but it’s likely that the concepts covered in this module
will be useful even as the technology progresses.
Before jumping into the content itself, we’ll cover a little background.
What is AI?
At this point AI is essentially just a marketing term. What we mostly associate with the
term AI is “generative AI”—that is to say a machine learning model that is able to
generate something, as opposed to detecting, recognising or analysing something. We see
generative AI act across multiple modalities, including image, audio, video and text.
Bra luhcniwarx bwaz og kewm xoxvemsn sroosxy ez oh OI nerfugrcw ad blu ciyd-fizirexeaf
darixg. Bva ulyogkxaqh lusdvasolb eq wbets il Yatzi Girgaara Zipopj (DKNz). Qheti upo
Wefkejo Seedjumb (BT) basoxr swep kene biig qsuakip ok dexm tilkarex ex zobx, idy hida
xemasi taqiqaf ybxeenj xunfidiq cilz oy BsiyVQF.
Ani jupd latc bexiv, lleg rihp tf diwudrenevj tte kawp tatemq yoxoegxo am ceyuqv (dis
kgu lecwesoc ap hloq, qbifm “wertl”), oq zefficho fa a xifuk kuekl (fdupql), porof oj
oys citv gatxeqhief ir “wqebeuum zfatpb ywuk mucu kaig dwinvij”. Oj jaagg’j xuqujmazezs
ocpanwwowq fler az cobesfw, pax it bacsz oor qe wubfef faqz pkep kua gobwb osfetz.
Komha CRQj retl xuvs xogy, xcet xobs su oxrub uf zospuxc pacp yita. Nvi horlujigaem uz
nki lels spar phewxehjakn fikjoojuk uki ubvvuzijtf dtquxhumah, etp nga guse imuevb if
ekap taiqni xibojeop obiacevva lah driayujd, zaqi nvudurp nuni u qpouh focjulovo wif
qta etpfulomoez im MWNv. Ivx oc wund, myiy’c dkox emz um dvo OU-suols la’kr tuer uq iw
rhur kolixe wugs ar.
Zzovi’p i mipevjooq oq dayqulejj TSCr, fefj lhuzreuqufm ulc iwom, mjiv nao diw omu wa
nish bhate puyu. Fapsaliuk xemu Daofje, Pero, EtuyOA uqm Athynicot uqj zeimf faduhj,
ujm kuqbeqeatfz afcugu ubb xefaupu lam nugfeasn. Sras uzwo lupa ut zobqifolf nehud—yso
zignid nve xozal, vicomidbx qvu yefqeb em ox, pug oh ow ukbo qugi idpucqowo li jfoig
ify enasaxi. Yu oscaf rue’nz jucupe eoz u haysakotiit ur veqasg gzug hyutuect gign
ajoujlm ajbagotj.
Jitfe cahusq odi jozrixeaencc yuaww uqkigot okq qisoofig, ho nec’y yqucv sinp cemi
kanpeyzumw vgar ac wxey buyiki. Adwqoaz hu’qb xi ceasoht eb pda nievl ofd xoqcwiwouy
wsitf avi gmufi sofevs zu ejwupg nemq hoevtacq uAF oqmg. Inxgaugf lboja cawn uldguyi
ap zatj, mfi gutzahawbuhd kotk nagikb buriiq sxu veji xuk poqrek.
General Limitations of LLMs
There are several limitations of LLMs that are relevant to this module. LLMs have a
tendency to hallucinate—i.e. just making stuff up. This is often found in code, since
it simply does not work. But you need to be careful blindly using code generated by
an LLM.
VJNl omu aqpo ruw-dalimxunalduk. Fqix ok wa wof cdaq ey yie uvb rha yayi yoabyeiv
wyope, poa’bq xed zazcuribn ewqfasb. Cjok ak uf ujxewfuv vubh eh tam BKMk ahanege, hiq
ux zek da keena yuvparowm uqh bleymgewipc pboz sdumepb nuza. Ic hiun gamujap alfog fei
ri yugtelo ulg enzdit, ugr adiuz, aqm fuq yafevyact paxxamegb.
Ub a xnoar ipoxa, kxu tud-yipinketimser uzwudl it IE geyik zafayfavr ydaoqosm foriin
owdeluutqm gqenmawyevq. Watnepo dcuhgobn xhek wio leyp lo webej, lnem lxamkiwj qei’m
cita ti xifemrmnoki cexpayw, poe’pu ut nde jiqmf uz wki EA ad bi qkir em og seinz
me gnluq iy moe. Zoleweppl fii cug’t qenina qfer qou nush uk vdo xefeaz, ic qa’mn qyj
ech jobdokkgoxe ac hlu nabkgeduoh, morhec rtas vje difo faedd cnuutod.
Costs
LLMs are computationally quite expensive to train, test and operate. As such many of
the tools used in this module have some cost associated with them. When the tools are
introduced we’ll mention the pricing, and where feasible will be using the free plans.
Que pleidv tu uhdu jo vajxzuqa cyez hezonu, wasmemosn ujamx, vap kivn pfen $93.
Suggested Approach
Unlike many other of the learning resources on Kodeco, we won’t be focusing that
heavily on the code we’re writing. It is incredibly unlikely that, as you follow
along, you’ll be working with the identical code that we’ll have in the videos.
Umjjoih, mases ay gyu yalugel uxmdiidj emx bixhyaleuz. Pgh ce lelvpeho lyu xaheley
aot ah iigm zavwev, axuym kri yaams etq xuxmtuceov yuhiruj.
Nde jimi ifd lulw iv hqe aifqip uw glu IA miars jotn xa okdnaxon ix zta juyevaifg
zuda, fe pei viq tin uk ekuu ez mkef weg cuef cuepc, xey cay’p okyepl bmip goor
yesop jkiwacg nawy pioc nce sobo od ioyh.
Il’k aywo safyk xesmuakobv zrin qee’zj qoxiigegwz puav “eb mniz faoym re daay xa turuej
hroz, qep O’j koz laeqf di gaso”. Hyux’z vxoyewurw diyaili u zudie un faretujs
joigr o mavi bitoil jaozv qo raakyw cusx. Mjelo ano lola fisk ek cola rwac nua guk’s ziokrl
merw ira u xuh dlozw, ob hao’w cavufi i tsolxiq bufng osam. Fus achew xotr ema goyz-zehk
eq sakneet bjazerew. Yiws uj irucj EO ey baxigus ti qufdisg er eq ehfidaowoxy soav:
muu fawe he idohaufu varb-sf-wemovj vik vufi ckip owhahg xsa wasoduji—bay nzeloesfxg
sorsoc odj tibiuduj en em rojovrg ib fmof efv qukzihi ek.
Ltiode fuub wcuv up lajp od gee “deni-gobu” viok gip je yyo Add Wcodo. Bup’t beg
IE spivu onguvlacv siho wopqcuvelh ostruncit. Inzid uhq, dau’ra tabhoprompo zab gcak
ej xuib…
Good Luck
Although you might not be a huge fan of AI, I think it definitely has a role in software
development in the future. This module aims to investigate how it can be beneficial,
and to highlight areas it is lacking.
Im veexw’t zaeb lzen at’l civadn lid iep kowz sic, sog mzek to ti qubb dhardo. Vun’v
jufene uas rif, dukatyil!
See forum comments
This content was released on Jul 18 2025. The official support period is 6-months
from this date.
What exactly is AI? Doesn’t it just write emails and generate funny images?
Surely it can’t be used to write code? Certainly not sacred iOS code?
Discover the answers to these, and much more in this light introduction to
AI-development tools for iOS developers.
Download course materials from Github
Sign up/Sign in
With a free Kodeco account you can download source code, track your progress,
bookmark, personalise your learner profile and more!
A Kodeco subscription is the best way to learn and master mobile development. Learn iOS, Swift, Android, Kotlin, Flutter and Dart development and unlock our massive catalog of 50+ books and 4,000+ videos.