Swift Algorithm Club: Hash Tables

Learn how to implement a hash table data structure in Swift, in this step-by-step tutorial from the Swift Algorithm Club. By Kelvin Lau.

Leave a rating/review
Save for later
Share
You are currently viewing page 2 of 3 of this article. Click here to view the first page.

Implementation

In the Sources directory, create a new Swift file and name it HashTable.swift. Delete any text in the file and write the following:

public struct HashTable<Key: Hashable, Value> {
  private typealias Element = (key: Key, value: Value)
  private typealias Bucket = [Element]
  private var buckets: [Bucket]

  private(set) public var count = 0
  public var isEmpty: Bool { 
    return count == 0
  }

  public init(capacity: Int) {
    assert(capacity > 0) 
    buckets = Array<Bucket>(repeating: [], count: capacity)
  }
}

Although you created a hash function based on the djb2 hash algorithm, it's better to leverage Apple's version. Through the constraining the Key as Hashable, your dictionary enforces that all keys have a hash value, so your dictionary doesn't need to worry about calculating the actual hash.

The main array is named buckets It has a fixed size provided by the init(capacity) method. You also keep track of how many items have been added to the hash table using the count variable.

Operations

Now that the scaffolding for your hash table is complete, you'll want to define the mutating operations for this structure. There are four common things you will do with a hash table:

  • insert a new elements
  • look up an element
  • update an existing element
  • remove an element

You'll want the syntax to look like this:

hashTable["firstName"] = "Steve" // insert
let x = hashTable["firstName"] // lookup
hashTable["firstName"] = "Tim" // update
hashTable["firstName"] = nil // delete

Start by defining the following helper method in your HashTable structure:

private func index(for key: Key) -> Int {
  return abs(key.hashValue) % buckets.count
}

This method will help ensure the key maps to an index within the bounds of the storage array. Next, add the following just below index(for:):

Value Retrieval

Write the following inside the HashTable structure:

// 1
public subscript(key: Key) -> Value? {
  get {
    return value(for: key)
  }
}

// 2
public func value(for key: Key) -> Value? {
  let index = self.index(for: key)
  return buckets[index].first { $0.key == key }?.value
}

If a match is found, you use optional chaining to extract the value. Otherwise, first will return nil, signifying that the key doesn't map to a value in the hash table.

  1. The subscript method takes a key and returns a value. The actual logic will reside in the value(for:) method.
  2. value(for:) first calls index(for:) to convert the key into an array index. That returns the bucket number, but this bucket may be used by more than one key if there were collisions. Thus, you use the first method that takes a closure, where you compare the key of each element with the key you want to match it with.

Inserting Values

The subscript method can also work as a setter. Add the following code at the bottom of subscript:

set {
  if let value = newValue {
    update(value: value, for: key)
  }
}

This adds a setter to the subscript operation. newValue is a invisible reference to the value that is being assigned to the subscript. Once again, you'll be defining actual logic in a helper method.

Add the following below value(for:):

@discardableResult
public mutating func update(value: Value, for key: Key) -> Value? {
  let index = self.index(for: key)
  
  // 1
  if let (i, element) = buckets[index].enumerated().first(where: { $0.1.key == key }) {
    let oldValue = element.value
    buckets[index][i].value = value
    return oldValue
  }

  // 2
  buckets[index].append((key: key, value: value))
  count += 1
  return nil
}

Here's the play-by-play:

  1. You first check to see if the value is already inside a bucket. If it is, you update the value at the index i.
  2. If execution comes to this point, it means the key doesn't map to a particular value inside the hash table. You then add the new key-value pair at the end of the bucket.

With that, you're finally able to try your hash table out. Navigate back to the playground page and write the following at the bottom of the playground:

var hashTable = HashTable<String, String>(capacity: 5)
hashTable["firstName"] = "Steve"

if let firstName = hashTable["firstName"] {
  print(firstName)
}

if let lastName = hashTable["lastName"] {
  print(lastName)
} else {
  print("lastName key not in hash table")
}

You should see the following output in the console:

Steve
lastName key not in hash table

Removing Items

The final operation you'll implement is the one that removes the key. Update the subscript method to the following:

public subscript(key: Key) -> Value? {
  get {
    return value(for: key)
  }

  set {
    if let value = newValue {
      update(value: value, for: key)
    } else {
      removeValue(for: key)
    }
  }
}

Next, add the remove(value:for:) method at the bottom of the HashTable structure:

@discardableResult
public mutating func removeValue(for key: Key) -> Value? {
  let index = self.index(for: key)
  
  // 1
  if let (i, element) = buckets[index].enumerated().first(where: { $0.1.key == key }) {
    buckets[index].remove(at: i)
    count -= 1
    return element.value
  }

  // 2
  return nil
}

This is fairly similar to the update method. You first check to see if the value is in the bucket. If it is, you remove the key in the chain, decrement the count, and return the value. Otherwise, you return nil, since you couldn't find the key-value pair to remove.

Navigate back to the playground page and write the following:

hashTable["firstName"] = nil

if let firstName = hashTable["firstName"] {
  print(firstName)
} else {
  print("firstName key is not in the hash table")
}

You should see the following in the console:

Steve
lastName key not in hash table
firstName key is not in the hash table

Resizing the Hash Table

This version of the hash table always uses an array of fixed size or capacity. If you have many items to store in the hash table, choose a prime number greater than the maximum number of items.

The load factor of a hash table is the percentage of the capacity that is currently used. If there are 3 items in a hash table with 5 buckets, then the load factor is 3/5 = 60%.

If the hash table is small, and the chains are long, the load factor can become greater than 1, which is a sign of bad performance. One way to avoid this is to resize the hash table. Adding the code for this condition is left as an exercise for the reader. Keep in mind that making the buckets array larger will change the array indices that the keys map to! This requires you to insert all the elements again after resizing the array.